数据分析即未来

前言

《数据分析即未来》这本书的作者格雷戈里·纳尔逊,是美国 ThotWave 的创始人和 CEO,国际分析研究所的专家,他在数据科学、知识管理和商业分析方面有着丰富的经验和深入的研究,发表了 200 多篇论文和出版物。

1.jpg

这本书出版于 2020 6 月,主要围绕数据分析的流程,讲述了企业全生命周期的数据分析应用之道和管理指南。

数据分析的核心工作,是把数据变成有价值信息的过程,从简单的统计报表和数据探索,知道数据指标和关键因素「是什么」,到具体原因的分析,知道数据背后的原因是「为什么」,再到预警、预测和优化的分析,知道下一步应该「怎么办」,从而能够主动做出更加科学的决策。

要成为一名高水平的数据分析师,需要同时具备「懂业务、懂数据、懂分析」三个条件,既要有扎实的数学、统计学、数据分析等基础能力,又要熟悉业务场景和流程,还要有很强的实践能力、创新能力、沟通表达能力和团队合作意识。业界经验显示,培养一个高水平的数据分析师,平均需要 9 年以上的数据分析实践经验,并且要持续学习新的专业技能和业务相关知识,才能应对快速变化的业务环境。

在大数据时代,数据分析不仅对企业至关重要,对个人也非常重要。我认为每个人无论从事什么职业,都应该具备一些数据分析能力,因为数据分析能够帮助个人获得更快的成长。

比如,我制作的「数据赋能系统」,其实也是数据分析的一种应用,运用数据分析的思维和工具,帮助自己和他人掌控时间、情绪和习惯,从而加速个人的成长。

作为数据分析部门的管理者,对于如何培养和留住优秀的数据分析人才,一直是我比较头疼的问题。我鼓励数据分析师「贴近业务、靠近数据、彼此接近」,帮助他们获得成长,发挥自己的潜能,努力满足业务的需求,解决业务的痛点和难点问题,为业务创造更大的价值。

想方设法让数据分析嵌入到业务流程中去,避免业务部门与数据分析团队之间互相埋怨,产生隔阂,这样才能让数据分析发挥出更大的价值。

我们身处一个数据非常丰富的时代,但真正对自己有效的信息其实是比较匮乏的,因为数据的噪音太多。所以,需要建立一套比较规范的数据收集、数据可视化、数据分析、数据应用的管理流程,有效地通过数据做出科学的决策。

过去,人们对数据分析的理解和应用,往往停留在一些方法论和技术工具的操作层面,比如 ExcelSQLPython 等技术的具体实现方法。然而,很少有人涉及分析思维模型的开发和应用。

未来,我预计会有越来越多的人认识到数据的价值,看到数据分析的光明前景。希望有越来越多的人能够用数据分析的思维模型来武装自己的大脑,从而做出更加明智的决策。

1. 分析概览

数据是真实世界中所发生事情的记录或「模型」,它几乎无处不在,从使用手机,到健康记录,再到购物历史,我们很难想象,一个没有数据的生活将会变成什么样?

我们不仅是数据的制造者,也是数据的消费者。

比如,我记录自己的时间、情绪和习惯,就生成了相应的数据,然后就可以对这些数据进行分析,找到数据背后隐藏的信息,从而做出更好的决策,完成一个从制作数据到消费数据的闭环。

数据分析是用知识创造价值的过程,从分析概念,到分析实践,再到分析成果,数据分析的真正作用是形成可行动的洞察力,从而帮助我们做出科学的决策。

数据分析的目的是为了洞察过去的规律,运用数据分析的思维,结合对业务的理解,通过数据分析的方法和机器学习的算法,预测未来的趋势,从而帮助我们做出正确的决策,采取适当的行动。  

2. 分析人才

数据分析是一个从是什么,到为什么,再到怎么做的过程,需要不断学习,形成 PDCA 循环,从而优化决策的过程。

数据分析的技能非常庞杂,没有任何人能精通一切分析技能,但人人都可以学习一些简单实用的分析技能,将数据转化为有用的能力,帮助自己做出更好的决策。

衡量数据分析人才,主要包括 4 项能力:技术(如ExcelSQLPython等)、业务(运营、流程、专业等)、方法(统计、A/B测试、质量提升等)、软技能(沟通表达、分析思维、写作、管理等),其中非技术方面的能力更重要,特别是解决实际问题的能力。  

人都是不完美的,研究表明,记忆常常不能真实反映现实,所以及时记录真实的数据,这对于后续的分析非常重要。

一个优秀的分析人才,需要通过不断学习实践系统性思维和批评性思维,养成质疑、勤练、反思的习惯。

 

文章来源——腾讯网